Stem cells help doctors regrow jaw bones for reconstructive surgery


Whether it is destroyed by an injury, disease, or bad infection, doctors have a new way to rebuild a person’s jawbone.

Oral Surgeon Dr. Robert Marx is leading a new type of treatment to rebuild patient’s jaws. As Professor of Surgery and Chief, Oral, and Maxillofacial Surgery at the University of Miami Miller School of Medicine, Dr. Roberts is using stem cells to give patients, gunshot victims and individuals with cancer, new hope.

Ramsey Hasan is a patient of Dr. Marx and had part of his jaw removed. According to Hasan, it was "a wisdom tooth extraction went bad. I lost a significant portion of my jaw."

Dr. Marx used a surgical technique called in situ, a type of tissue engineering, to grow Hasan a new jaw.

Stem cells are harvested from the hip bone during a reconstructive surgery. Then, cadaver bone and a special protein called BMP help the stem cells grow new bone.

The components for the surgery are secured by a titanium plate which in six months produces a bone that is “absolutely normal.”

“Any of the cadaver bone is dissolved and replaced by the patient's own bone, stimulated by the B-M-P, and actually produced by the bone marrow,” says Dr. Marx.

Hasan’s jaw is healed, and he says he is happy with the results.

"I now have a healthy gum, a healthy jaw, which is most important, and some fake teeth that don't feel fake."

Dr. Marx helped pioneer this stem cell procedure at the University of Miami, and while he may be the only surgeon performing the procedure now, he says he is teaching it to other doctors across the country.

Dr. David Campbell of Michiana is among those practicing the procedure. His office, Ear Nose & Throat of Michiana, is located at 100 Navarre Pl Suite 4430 in South Bend.

RESEARCH SUMMARY

TOPIC: MENDING MOUTHS: REBUILDING JAWBONES WITH STEM CELLS
REPORT: MB# 3592

BACKGROUND: Maxillofacial bone grafting and bone harvesting developed to the scientific level during WWI. The development of radical surgery to treat oral cancers began close to 1906. That effort along with the increase in war-related maxillofacial defects began in 1914. The U.S. Army Medical Corps and the U.S. Army Dental Corps began with a block graft harvest from the lacteral tibia with a reported success rate of 64.5%. During 1918 and 1941, anesthesia became more reliable. The practice of bone harvesting, mostly from the ribs and iliac crest, was utilized in WWII related jaw reconstructions. During WWII one-piece iliac block grafts were used 81% of the time, ribs 15%, one-piece tibia grafts 2%, and chip grafts 1%. In 1944, iliac cancellous bone chips were introduced. After WWII, tumor and civilian trauma were the main indications for mandibular reconstruction and cancellous marrow grafts were the most common. This type of grafting has been popularized in the 1990s and early 2000. Now, free microvascular transfers of the fibula are often used today by nondental surgeons to reconstruct defects of the mandible. Recombinant human bone morphogenetic protein (rhBMP) has shown significant bone regeneration capabilities in maxillofacial and oral bone defects. (Source: Marx, Robert E., Atlas of Oral and Extraoral Bone Harvesting)

HARVESTED BONE: When a bone graft is harvested, there is a period of time before it is placed into the recipient site. It is recommended to minimize the out of body time, but sometimes it can extend up to two hours. The principle of autogenous bone harvesting is to transplant viable osteocompetent cells along with a matrix that contains a signal for bone regeneration. It is necessary to maintain the viability of the grafts. Studies have shown that room-temperature saline preserves more than 95% of graft cell viability for at least four hours. Because autogenous osteocompetent cells and bone marrow stem cells are hardy, they will survive to regenerate bone in most cases unless they are destroyed during the time between harvest and placement. The most common cause of cell viability is contact with sterile distilled water. (Source: Marx, Robert E., Atlas of Oral and Extraoral Bone Harvesting)

NEW TECHNOLOGY: Recombinant human bone morphogenetic protein-2/acellular collagen sponge was FDA approved for orthopedic lumbar spinal fusions, open tibial fractures, oral and maxillofacial sinus floor augmentations and alveolar ridge preservations. It is an alternative to autogenous bone grafting without the morbidity of bone harvesting. It regenerates new bone on its own. The bound BMP in the acellular collagen sponge is chemotactic to stem cells and preosteoblasts. These cells will migrate into the sponge and undergo proliferation and differentiation into osteoblasts, which will then synthesize osteoid. Once this process is complete, the osteoid will undergo the standard remodeling cycle of bone to a mature ossicle in six months. The production of rhBMP-2 begins with restricted enzymes, which is the BMP-2 gene from chromosome 20 in the human genome. This gene is transferred into a bacterial plasmid. Then it is transfected into a chromosome in Chinese hamster ovary cells (CHO) and cultured to increase the numbers. The CHO cells will produce hamster proteins, but also one unique human protein called BMP-2. It is separated to produce a purely human protein free of bacteria or animal proteins and in high concentrations to regenerate bone in humans. (Source: Marx, Robert E., Atlas of Oral and Extraoral Bone Harvesting)

Bottom of Form
FOR MORE INFORMATION, PLEASE CONTACT:

Robert E. Marx, DDS
(305) 256-5270
rmarx@med.miami.edu

If this story or any other Ivanhoe story has impacted your life or prompted you or someone you know to seek or change treatments, please let us know by contacting Andrew McIntosh at amcintosh@ivanhoe.com.


Comments are posted from viewers like you and do not always reflect the views of this station.
powered by Disqus
WNDU - Channel 16 54516 State Road 933 South Bend, IN 46637 Front Desk: 574-284-3000 Newsroom: 574-284-3016 Email: newscenter16@wndu.com
Gray Television, Inc. - Copyright © 2002-2014 - Designed by Gray Digital Media - Powered by Clickability 200634471 - wndu.com/a?a=200634471