New Ways to Deliver Drugs

Have you ever forgotten to take your daily meds? Well you are not alone. Studies shows about 50 percent of patients do not take their drugs as prescribed. Researchers are hoping to be able to change that.

What if you could take these or even all of this and put it on this?

"It is possible that each of those containers can have a different drug in them," says Michael Cima, PhD, a MIT Professor of Engineering.

MIT's Doctor Michael Cima helped create the first pharmacy on a chip. It can be programmed wirelessly to release medication from tiny reservoirs.

Osteoporosis patients, who have to inject themselves with bone growth drugs every day, were the first to test it.

"This was implanted just below the beltline underneath the skin," explains Dr. Cima.

A month long study showed the implant delivered the drug comparable to the patients' usual daily injection with no adverse side effects.

In another MIT lab, Carl Schoellhammer is testing high and low frequency ultrasound as a way to painlessly deliver drugs through the top layer of skin. The sound waves suspend the bubbles in the solution.

"Eventually these bubbles become unstable and they implode and that causes a little jet that hits the skin," explains Carl Schoellhammer, a MIT Post-Doctoral Candidate.

This makes the skin permeable, so a patch of medication or even a vaccine could be applied and absorbed into the body without needles.

"This would be possible without the fear of transmitting any disease from person to person," explains Schoellhammer.

Two new technologies taking the hurt and hassle out of drug delivery. The ultrasound drug delivery system is still in the prototype phase.

Doctor Cima says the microchip could help patients who need drugs for things like diabetes, cancer and multiple sclerosis.

The microchip's first study tested 20 doses of medication. The next study will test the device with a year's worth of drugs. There are also plans to make microchips with 30 years’ worth of medications.

MEDICAL BREAKTHROUGHS
RESEARCH SUMMARY

TOPIC: Getting Under your Skin: New Ways to Deliver Drugs
REPORT: MB # 3569

BACKGROUND: For many years, pharmaceuticals have primarily consisted of fast-acting chemical compounds that are dispensed orally (pills or liquids). During the past couple of decades, there have been formulations that control the period and rate of drug delivery (time-release medication). They can target individual areas of the body for treatment. (Source: pubs.acs.org) Researchers are going beyond the development challenges of improving the effectiveness of the drug itself. They are engineering ways to deliver drugs more effectively. Correct dosage to the right location is critical for safety, efficiency standpoints, and convenience. New approaches have been developed to improve safety, efficiency, and convenience. They include drug modification by chemical means, drug entrapment in small vesicles that are injected into the bloodstream, and drug entrapment within pumps that are placed in desired bodily compartments (like underneath the skin). (Source: www.ncbi.nlm.nih.gov)

PHARMACY ON A CHIP: Researchers at MIT have completed the first trial of a drug-releasing microchip in humans. The chip is the size of a pacemaker (5 centimeters by 3 centimeters). In the clinical study it was implanted along the waistline in approximately seven women who had osteoporosis. It released 19 daily doses of an osteoporosis drug that usually requires injections. The microchip was proven to safely deliver the medication as effectively as normal injections. The devices will not be ready for the public until at least four more years. Researchers believe that the technology will enable people who take injectable drugs for certain conditions, like multiple sclerosis and rheumatoid arthritis, to use a microchip instead. (Source: www.web.mit.edu)

LOW FREQUENCY ULTRASOUND: MIT is researching another innovative way to deliver drugs in a noninvasive way. Researchers are studying high and low frequency ultrasounds as a way to deliver drugs through the top layer of the skin. Researchers believe it could be used for topical drugs, systemic drugs, and proteins (like insulin). Ultrasounds increase the skin permeability by gently wearing down the top layer of the skin. The researchers found that by applying two separate beams of ultrasound waves, high and low frequencies, can boost permeability more rapidly than using a single beam. Ultrasound waves create tiny bubbles that move chaotically. When they reach a certain size, they implode. Fluid around it gushes into the empty space and generates high-speed "micro-jets" of fluid that create abrasions on the skin. For this study, the fluid could be water or a liquid containing the drug that needs to be delivered. The MIT team found that by combining the high and low frequencies, better results will be accomplished. The high frequency waves generate additional bubbles, which are then popped by the low frequency waves. Also the high frequency waves limit the bubbles movement, keeping them in a desired treatment area. This could be used to deliver any type of drug that is currently given by capsules, drugs for skin conditions, or to enhance transdermal patches. Researchers are hoping it could deliver diabetics their insulin noninvasively. (Source: www.web.mit.edu)

FOR MORE INFORMATION, PLEASE CONTACT:

Caroline McCall
Media Relations Assistant
MIT News Office
617-253-1682
cmccall5@mit.edu


Comments are posted from viewers like you and do not always reflect the views of this station.
powered by Disqus
WNDU - Channel 16 54516 State Road 933 South Bend, IN 46637 Front Desk: 574-284-3000 Newsroom: 574-284-3016 Email: newscenter16@wndu.com
Gray Television, Inc. - Copyright © 2002-2014 - Designed by Gray Digital Media - Powered by Clickability 187497121 - wndu.com/a?a=187497121